走进不科学 第519节(3 / 4)

投票推荐 加入书签 留言反馈

  不过很尴尬的是。
  毕教主宣传了几十年,研究了几十年,亲和数依然还是只有220和284。
  直到毕教主去世,人们对于亲和数的认知依然停留在220和284。
  而且更尴尬的是在之后几百年里,数学界依然没有找到第二对亲和数。
  所以大家开始怀疑220和284是毕教主碰巧随口说出来的两个数字。
  随着对于亲和数研究热度的减退,它就此渐渐淡出人们的视野。
  直到公元850年,阿拉伯全能王数学家塔别脱·本·科拉提出了一个想法:
  无穷的自然数中亲和数一定不止一对!
  他和以往数学家不同,他不打算去从漫无边际的自然数中筛选。
  而是从一般规律出发,试图找到亲和数的通用公式。
  这位全能王为了研究亲和数放弃了其他所有科目的研究,年仅20多岁就谢顶了。
  不过功夫不负有心人,后来他总算归纳出了一个规律:
  a=3x2^(x-1)-1
  b=3x2^x-1
  c=9x2^(2x-1)-1。
  这里的x是大于1的自然数,若abc均为素数,那么2xab与2xc就是一堆友好数。
  比如取x=2,那么a5,b=11,c=71。
  所以2x2x5x11=220和2x2x71=284为一对亲和数。
  结论一出,证明了毕教主不是信口开河,亲和数的确存在,并且可以通过计算得到。
  从这里起,故事开始有意思了起来……
  自那以后。
  数学家们不再没有头绪的寻找亲和数。
  而是一边寻找更为简单的公式,一边通过公式大量计算来寻找亲和数。
  但遗憾的是。
  在之后800多年里,数学家们不仅没有优化全能王的公式,而且一对新的亲和数都没有找到……
  这也就是说。
  在毕达哥拉斯之后2500年,没有人能够找到第二对亲和数的影子!
  这个局面一直持续到了1636年,逼王费马闪亮登上历史舞台,一举打破了2500多年的历史尴尬。
  这位“业余数学家”实在看不下去了,白天养家糊口,晚上计算亲和数,算的脑瓜子嗡嗡的。
  最终在他算的满头白发的时候,终于找到了第二对亲和数: ↑返回顶部↑

章节目录