走进不科学 第459节(3 / 4)
约翰·提丢斯生活在18世纪,那个时期,人们已知太阳系有六大行星。
即水星、金星、地球、火星、木星、土星。
提丢斯是个天文爱好者,经过长期的观测,他在1766年写下了这么一个数列:
a=0.4+0.3x2^k。
里头的a是指行星到太阳的平均距离,也就是1.5亿公里。
其中k=0,1,2,4,8,16……,0以后数字为2的n次方。
如果以日地距离……也就是1.5亿公里为一个天文单位,那么六大行星到太阳距离的比值分别是:
0.4、0.7、1.0、1.6、5.2、10.0。
而实际上的数值是:
0.39、0.71、1.0、1.52、5.2、9.8。
是不是很惊讶?
没错。
在星空这个参考系中,两个结果可以说无限接近于一致。
1781年的时候,赫歇尔就是在接近19.6的位置上(即数列中的第八项)发现了天王星。
从此,人们就对这一定则深信不疑了。
根据这一定则。
在数列的第五项……即2.8的位置上也应该对应一颗行星或者小行星,只是在当时还没有被发现。
于是许多天文学家和天文爱好者便以极大的热情,踏上了寻找这颗新行星的征程。
这颗小行星就是谷神星,发现者正是现场的高斯。
后来这个规律被柏林天文台的台长波得总结,归纳成了一个经验公式来表示,叫做提丢斯-波得定则。
说道这里,就又到了鞭尸某度百科的时间了。
如果你在百度上搜索提丢斯-波得定则,会在详细介绍中看到一句话:
【由于1846年发现的海王星、1930年发现的冥王星与该式的偏离很大,故许多人至今持否定态度】
其中百科给出的海王星的推算数据是38.8个天文单位,实际距离30.2个天文单位。
冥王星的推算数据是77.2个天文单位,实际距离39.6天文单位。
是的,看到这里,天文专业的同学应该发现了一个问题:
某度小编把冥王星的数据计算成了77.2——这特么是太阳系内边界的距离……
实际上呢。
在计算过程中,由于k次多项式存在的缘故,冥王星和海王星是共用n=8来计算的。
所以根据提丢斯-波得定则计算,冥王星的误差率是2%,而非200%。 ↑返回顶部↑
即水星、金星、地球、火星、木星、土星。
提丢斯是个天文爱好者,经过长期的观测,他在1766年写下了这么一个数列:
a=0.4+0.3x2^k。
里头的a是指行星到太阳的平均距离,也就是1.5亿公里。
其中k=0,1,2,4,8,16……,0以后数字为2的n次方。
如果以日地距离……也就是1.5亿公里为一个天文单位,那么六大行星到太阳距离的比值分别是:
0.4、0.7、1.0、1.6、5.2、10.0。
而实际上的数值是:
0.39、0.71、1.0、1.52、5.2、9.8。
是不是很惊讶?
没错。
在星空这个参考系中,两个结果可以说无限接近于一致。
1781年的时候,赫歇尔就是在接近19.6的位置上(即数列中的第八项)发现了天王星。
从此,人们就对这一定则深信不疑了。
根据这一定则。
在数列的第五项……即2.8的位置上也应该对应一颗行星或者小行星,只是在当时还没有被发现。
于是许多天文学家和天文爱好者便以极大的热情,踏上了寻找这颗新行星的征程。
这颗小行星就是谷神星,发现者正是现场的高斯。
后来这个规律被柏林天文台的台长波得总结,归纳成了一个经验公式来表示,叫做提丢斯-波得定则。
说道这里,就又到了鞭尸某度百科的时间了。
如果你在百度上搜索提丢斯-波得定则,会在详细介绍中看到一句话:
【由于1846年发现的海王星、1930年发现的冥王星与该式的偏离很大,故许多人至今持否定态度】
其中百科给出的海王星的推算数据是38.8个天文单位,实际距离30.2个天文单位。
冥王星的推算数据是77.2个天文单位,实际距离39.6天文单位。
是的,看到这里,天文专业的同学应该发现了一个问题:
某度小编把冥王星的数据计算成了77.2——这特么是太阳系内边界的距离……
实际上呢。
在计算过程中,由于k次多项式存在的缘故,冥王星和海王星是共用n=8来计算的。
所以根据提丢斯-波得定则计算,冥王星的误差率是2%,而非200%。 ↑返回顶部↑