走进不科学 第19节(3 / 4)

投票推荐 加入书签 留言反馈

  比如n个a+b相乘,就是从a+b中取一个字母a或b的积,例如(a+b)^2=a^2+2ab+b^2……算了,我估计你也听不懂。”
  徐云似笑非笑的看了他一眼,说道:
  “我听得懂啊,杨辉三角嘛。”
  “嗯,所以还是准备一下等下去威廉舅……等等,你说什么?”
  小牛原本正顺着自己的念头在说话,听清徐云的话后顿时一愣,旋即猛然抬起头,死死地盯着他:
  “羊肥三搅?那是什么?”
  徐云想了想,朝小牛伸出手:
  “能把笔递给我吗,牛顿先生?”
  如果这是在一天前,也就是小牛刚见到徐云那会儿,徐云的这个请求百分百会被小牛拒绝。
  甚至有可能会被再送上一句‘你也配?’。
  但随着不久前色散现象的推导,此时的小牛对于徐云——或者说他身后的那位韩立爵士,已经隐约产生了一丝兴趣与认同。
  否则他刚刚也不会和徐云多解释那么一番话了。
  因此面对徐云的要求,小牛罕见的递出了笔。
  徐云接过笔,在纸上快速的写画了一个图:
  ……1
  ……1……1
  ……1……2……1
  1……3……3……1(请忽略省略号,不加的话起点会自动缩进,晕了)
  ……
  徐云一共画了八行,每行的最外头两个数字都是1,组成了一个等边三角形。
  熟悉这个图像的朋友应该知道,这便是赫赫有名的杨辉三角,也叫帕斯卡三角——在国际数学界,后者的接受度要更高一些。
  但实际上,杨辉发现这个三角形的年份要比帕斯卡早上四百多年:
  杨辉是南宋生人,他在1261年《详解九章算法》中,保存了一张宝贵图形——“开方作法本源”图,也是现存最古老的一张有迹可循的三角图。
  不过由于某些众所周知的原因,帕斯卡三角的传播度要广很多,一些人甚至根本不认杨辉三角的这个名字。
  因此纵有杨辉的原笔记录,这个数学三角形依旧被叫做了帕斯卡三角。
  但值得一提的是……
  帕斯卡研究这幅三角图的时间是1654年,正式公布的时间是1665年11月下旬,离现在……
  还有整整一个月!
  这也是徐云为什么会从色散现象入手的原因:
  色散现象是很典型的微分模型,甚至要比万有引力还经典,无论是偏折角度还是其本身的“七合一”表象,都直接的指向了微积分工具。 ↑返回顶部↑

章节目录